Annotated Bayesian Networks: A Tool to Integrate Textual and Probabilistic Medical Knowledge
نویسندگان
چکیده
In previous publications we have reported on the development of Bayesian Network models for the preoperative discrimination between malignant and benign ovarian mass. The models incorporated both medical background knowledge and patient data, which required the traceability of the incorporated prior medical knowledge. For this purpose, we followed a particular annotation method for Bayesian Networks using a dedicated representation. In this paper we present the resulting Annotated Bayesian Network (ABN) representation that consists of a regular Bayesian Network with standard probabilistic semantics and a corresponding semantic network, to which the textual information sources are attached. We demonstrate the applicability of such dual model to represent both the rigorous probabilistic and the unconstrained textual medical knowledge. We describe methods on how these Annotated Bayesian Network models can be used: (1) as a domain model to arrange the personal textual information of the clinician according to the semantics of the domain , (2) in decision support to provide detailed, even personalized explanation, and (3) to enhance the information retrieval to find new textual information more efficiently.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Model for COPD Diagnosis and Phenotyping Using Bayesian Networks
Introduction: This research was meant to provide a model for COPD diagnosis and to classify the cases into phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian Network (BN). Methods: The model was constructed through developing the Bayesian Network structure and instantiating the parameters for each of the variables. In order to validate the achiev...
متن کاملA Probabilistic Knowledge Base Using Annotated Bayesian Network Features
The probabilistic modeling of a high dimensional domain includes the modeling of the joint distribution over the domain variables on numeric, qualitative and possibly causal levels. Additionally, it includes the combination of statistical data with domain knowledge acquired from experts and the usage of the result in a decision theoretic framework. We overview the Bayesian network representatio...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کامل